сайт для палких паяльників

Проектирование силовой части обычно начинают с выбора ключей. Наиболее подходящие для этого полевые MOSFET транзисторы. Выбор силовых транзисторов делается на основании данных о максимальном возможный ток и напряжение питающей сети двигателя.

Выбор силовых транзисторов

Транзисторы должны выдерживать рабочей ток с некоторым запасом. Поэтому выбирают полевые транзисторы с рабочим током в 1.2-2 раза больше максимального тока двигателя. В характеристиках полевых транзисторов может быть указано несколько значений тока для различных режимов. Иногда указывают ток, который может выдерживать кристалл Id (Silicon Limited) (он больше) и ток, ограниченный возможностями корпуса транзистора Id (Package Limited) (он меньше). например:

ESC

Кроме того, фигурирует ток для импульсного режима (Pulsed Drain Current), который, значительно больше (в несколько раз), чем максимально возможный постоянный ток.

ESC

Надо выбирать транзисторы по постоянному току, и не обращать внимание на параметры, указанные для импульсного режима. При выборе транзистора учитывается только значение постоянного тока. В данном случае – 195А.

Если невозможно подобрать транзистор нужным рабочим током, несколько транзисторов включают параллельно.

ESC

При этом обязательно следует применять указанные на схеме резисторы. Их номинал – единицы Ом, но благодаря им соединены параллельно транзисторы открываются одновременно. Если эти резисторы не ставить, может возникнуть ситуация, когда один из транзисторов открывается, а остальные – еще нет. За это короткое время вся мощность сваливается на один транзистор и выводит его из строя. Об определении номинала этих резисторов говорится ниже. Два транзистора, включенных параллельно, выдерживают вдвое больший ток. 3 – в 3 раза больше. Но не следует злоупотреблять этим и строить ключи из большого количества мелких транзисторов.

Выбор полевых транзисторов по напряжению также выполняется с запасом как минимум в 1.3 раза. Это делается для того, чтобы избежать выхода из строя транзисторов из за скачков напряжения во время коммутаций.

Кроме указанных выше параметров, следует поинтересоваться максимальной температурой работы транзистора и будет ли он выдерживать необходимый ток при этой температуре. Одна из важнейших характеристик – это сопротивление открытого транзистора. Его значения могут достигать нескольких миллиом. На первый взгляд – очень мало, но при больших токах на нем будут выделяться значительные объемы тепла, которое придется отводить. Мощность, которая будет греть транзистор в открытом состоянии, рассчитывается по формуле:

P=Rds*Id^2

Где:
Rds– сопротивление открытого транзистора;
Ids – ток, который протекает через транзистор.

Отже, якщо транзистор irfp4468pbf має опір 2.6 мOм, то під час пропускання струму 195 А на ньому буде виділятися 98.865 Ватт тепла. У випадку мостової трьохфазної схеми у кожний момент часу відкриті тільки два ключі. Тобто, на двох відкритих транзисторах буде виділятися однакова кількість тепла (по 98.865 Вт, загалом – 197.73 Вт). Але вони працюють не весь час, а по черзі – парами, тобто кожна пара ключів працює 1/3 часу. Отже правильно сказати, що загалом на всіх ключах буде виділятися 197.73 Вт тепла, а на кожному з ключів (98.865 / 3 = 32.955 Вт). Слід забезпечити відповідне охолоджування транзисторів.

Итак, если транзистор irfp4468pbf имеет сопротивление 2.6 мOм, то при токе 195 А на нем будет выделяться 98.865 Ватт тепла. В случае мостовой трехфазной схемы в каждый момент времени открыты только два ключа. То есть, на двух открытых транзисторах будет выделяться одинаковое количество тепла (по 98.865 Вт, в общем – 197.73 Вт). Но они работают не все время, а по очереди – парами, то есть каждая пара ключей работает 1/3 времени. Так что правильно сказать, что в целом на всех ключах будет выделяться 197.73 Вт тепла, а на каждом из ключей (98.865 / 3 = 32.955 Вт). Следует обеспечить соответствующее охлаждение транзисторов.

Но есть одно “но”

Мы примерно подсчитали те тепловые потери, которые происходят за период, когда ключи полностью открыты. Однако не надо забывать, что для ключей присущи такие явления, как переходные процессы. Именно в момент переключения, когда сопротивление ключа изменяется от практически нулевого до почти бесконечности и наоборот, происходит наибольшее тепловыделение, которое значительно больше тех потерь, которые происходят при открытых ключах.

Уявімо, що ми маємо загрузку 0.55 Ом. Напруга живлячої мережі 100В. При повністю відкритих ключах отримаємо струм 100/0.55 = 181 А. Транзистор закривається і в деякий момент його опір сягає 1 Ом. У цей час через нього тече струм 100/(1+0,55)=64.5А Пам’ятаєте формулу, за якою обчислюється теплова потужність? Виходить, що в цей, дуже короткий, час теплові втрати на транзисторі (1+0.55)*(64.5^2) = 6448 Вт. Що значно більше ніж при відкритому ключі. Коли опір транзистора зросте до 100 Ом втрати будуть 99.45 Вт. Коли опір транзистора зросте до 1 КОм втрати будуть 9.98 Вт. Коли опір транзистора зросте до 10 КОм втрати будуть 0.99 Вт.

Представим, что мы имеем нагрузку 0.55 Ом. Напряжение питающей сети 100В. При полностью открытых ключах получим ток 100 / 0.55 = 181 А. Транзистор закрывается и в некоторый момент его сопротивление достигает 1 Ом. В это время через него течет ток 100 / (1 + 0,55) = 64.5А. Помните формулу, по которой вычисляется тепловая мощность? Получается, что в этот очень короткий момент тепловые потери на транзисторе (1 + 0.55) * (64.5 ^ 2) = 6448 Вт. Что значительно больше чем при открытом ключе. Когда сопротивление транзистора возрастет до 100 Ом потери будут 99.45 Вт. Когда сопротивление транзистора возрастет до 1 кОм потери будут 9.98 Вт. Когда сопротивление транзистора возрастет до 10 кОм потери будут 0.99 Вт.

Если вы создадите очень мощную систему охлаждения, а в транзисторе будет образовываться больше тепла чем он физически сможет отвести от себя (смотри: Maximum Power Dissipation), он сгорит.

ESC

Итак, не трудно понять, чем быстрее будут переключаться ключи, тем меньше тепловые потери, и тем меньше будет температура ключей.

На скорость переключения ключей влияет: емкость затвора полевого транзистора, номинал резистора в цепи затвора, мощность драйвера ключей. От правильного выбора этих элементов зависит насколько эффективно будут работать ключи.

Иногда люди считают, что можно увеличить мощность регулятора лишь изменив ключи на более мощные. Это не совсем так. Более мощные транзисторы имеют большую емкость затвора, а это увеличивает время открывания транзистора, что влияет на их температурный режим. Такое редко случается, но у меня был случай, когда простая замена транзисторов на более мощные увеличила их температуру из за того, что время их переключения выросло. Итак, более мощные транзисторы требуют более мощных драйверов.

Драйверы MOSFET ключей

Что такое драйвер ключей и зачем он нужен? Зачем вообще нужны драйверы? Можно включать полевые транзисторы как показано на схеме:

ESC

Да, в этом случае в качестве драйверов выступают биполярные транзисторы. Это также допустимо. Есть также схемы, где в качестве верхних ключей используются транзисторы с P-каналом, в качестве нижних – с N-каналом. То есть, используется два типа транзисторов, что не всегда удобно. К тому же P-канальные транзисторы большой мощности почти невозможно найти. Обычно использование такое сочетание транзисторов с различными каналами применяют в маломощных контроллерах для упрощения схемы.

Использовать однотипные транзисторы, обычно только N-канальные, значительно удобнее, однако это требует соблюдения некоторых требований по управления верхними транзисторами моста. Напряжение на затвор транзисторов надо подавать относительно их истоков (Source). В случае нижнего ключа вопросов не возникает, его виток (Source) присоединен к земле и мы можем спокойно подавать напряжение на затвор нижнего транзистора относительно земли. В случае верхнего транзистора все несколько сложнее, поскольку напряжение на его истоке (Source) изменяется относительно земли.

Объясню. Представим, что верхний транзистор открыт, через него протекает ток. В таком состоянии на транзисторе падает достаточно малое напряжение и можно сказать, что напряжение на истоке Source верхнего транзистора практически равно напряжению питания двигателя. Кстати, чтобы удерживать верхний транзистор открытым, нужно подать на его затвор напряжение, выше напряжение на его истоке (Source), то есть – выше напряжение питания двигателя.

Если верхний транзистор закрыт, а нижний открыт, то на истоке (Source) верхнего транзистора напряжение достигает практически нулю.

Драйвер верхнего ключа обеспечивает подачу на затвор полевого транзистора необходимое напряжение относительно его истоков (Source), и обеспечивает генерацию напряжения, большей по напряжение питания двигателя для управления транзистором. Этим, и не только этим, занимаются драйверы MOSFET ключей.

Выбор драйвера и их многообразие

Многообразие драйверов достаточно велико. Нас интересуют драйверы, которые имеют два входа для верхнего и нижнего ключей (драйверы верхнего и нижнего ключей). Например: IR2101, IR2010, IR2106, IR21064, IR2181, IR2110, IR2113 и др. Надо обратить внимание на параметр Vgs ваших транзисторов. Большинство драйверов рассчитаны для Vgs=20В. Если Vgs транзисторов меньше выходное напряжение драйверов, например Vgs транзистора = 5В, то драйверы с выходным напряжением 20В выведут такие транзисторы из строя.

Большинство драйверов питаются напряжением 10-20В и поддерживают входные сигналы различных уровней -3.3В, 5В, 15В.

Существуют драйверы для трехфазных мостовых схем, например:
IR3230, IRS2334, IRS2334, IR21363, IR21364, IR21365, IR21368, IRS2336, IRS23364D, IRS2336D, IRS26310DJ, IR2130, IR2131, IR2132, IR2133, IR2135, IR2136, IRS2330, IRS2330D, IRS2332, IRS2332D, IR2233, IR2235, IR2238Q, IRS26302DJ.
Такие драйверы ключей могут стать самым подходящим вариантом. К тому же в некоторых трехфазных драйверах есть дополнительная возможность для обеспечения защиты ключей от слишком большого тока и т.п. Довольно интересная серия драйверов IRS233x (D). Она обеспечивает широкий спектр защит, в том числе защиту от негативных скачков напряжения, защита от короткого замыкания, от перегрузки, защита от снижения напряжения в шине, от снижения напряжения питания, защита от перекрестного включения.

Один из важнейших показателей драйверов – это максимальный выходной ток. Обычно от 200мА до 4000мА. Может показаться что 4 Ампера – это слишком. Но все решает калькулятор. Как отмечалось выше скорость переключения ключей – очень важная вещь. Чем мощнее драйвер, тем меньше времени тратится на переключение ключей. Примерно рассчитать время переключения ключей можно по формуле:

ton = Qg*(Rh+R+Rg)/U

Где:
Qg – полный заряд затвора полевого транзистора;
Rh – внутреннее сопротивление драйвера. Рассчитывается как U/Imax, где U – напряжение питания драйвера, Imax – максимальной выходной ток. Обратите внимание, что максимальной выходной ток может быть различным для верхнего и нижнего транзистора;
R – сопротивление резистора в цепи затвора;
Rg – внутреннее сопротивление затвора транзистор;
U – напряжение питания драйвера.

Например, если мы используем транзистор irfp4468pbf и драйвер IR2101 с максимальным током 200мА. А в цепи затвора резистор 20 Ом, тогда время переключения транзистора:

540*(12/0.2 + 20 + 0.8)/12 = 3636 нС

Заменив драйвер на IR2010, с максимальным током – 3А, и резистором в цепи затвора – 2ом, получим такое время переключения:

540*(12/3+2+0.8)/12 = 306 нС

То есть, с новым драйвером время переключения сократился более чем в 10 раз. Так что и тепловые потери на транзисторах значительно уменьшатся.

Расчет резисторов в цепи затвора

К сожалению я пока не нашел четких рекомендаций по расчету номиналов резисторов в цепи затвора силовых транзисторов. Их отсутствие или слишком мал номинал может вызвать нежелательные эффекты для драйверов, и, как следствие, неуправляемое открытия транзисторов (подробнее почитать можно здесь: http://integral.rv.ua/IR17.htm).

Я выработал для себя такое правило: сопротивление резистора в цепи затвора полевого транзистора должен быть не менее, чем внутреннее сопротивление драйвера, разделен на 3 Например, драйвер IR2101 питается напряжением 12В, максимальный ток – 0,25А. Его внутреннее сопротивление: 12В / 0,25 = 48Ом. В данном случае резистор в цепи затвора полевого транзистора должно быть больше, чем 48/3 = 16 Ом. Если время переключения транзисторов с выбранными резисторами не устраивает, следует выбрать более мощный драйвер.

Я не могу назвать эту методику идеальной, но она проверена практикой. Если кто сможет прояснить этот момент – буду благодарен.

Иногда к цепи затвора транзистора добавляют диода с резистором или без.

ESC

Это делается для того, чтобы увеличить скорость закрывания ключа. Для того чтобы защитить транзистор от чрезмерного напряжения Vgs иногда используют стабилитроны присоединены к затвору (Gate) и истоком (Sources) транзистора. Перед тем как использовать стабилитрон, выясните какая у него емкость. Обычные стабилитроны могут иметь существенную паразитную емкость, может значительно ухудшить ситуацию с временем открытия транзистора.

Защитные диоды

Поскольку во многих случаях силовые транзисторы работают с индуктивной нагрузкой, должны использоваться защитные диоды. Если их не будет, то при выключении транзистора вследствие переходных процессов на индуктивностях (обмотках двигателя) возникнет перенапряжение, что во многих случаях пробивает транзистор и выводит его из строя.

Во многих силовых транзисторах уже есть внутренние защитные диоды и нет необходимости использовать внешние диоды. Но не забудьте это проверить в документации на транзистора.

Dead-Time

Изменение состояния силовых ключей в регуляторе трехфазного бесколлекторного двигателя выполняется в следующей последовательности:

  • выключаем ключ, который надо выключить;
  • ждем некоторое время (Dead-Time) пока закроется транзистор (примерное время переключения транзистора мы рассчитывали ранее), и закончатся переходные процессы, связанные с коммутацией;
  • включаем ключ, который надо включить.

Все драйверы верхнего и нижнего ключей имеют задержку между выходными сигналами чтобы не допустить одновременного открытия обоих транзисторов (смотри: Схема регулятора скорости бесколлекторного двигателя (ESC)). Но эта задержка слишком мала. Некоторые драйверы верхнего и нижнего ключей имеют реальный Dead-Time. Но в нашем случае, это абсолютно никак не поможет, потому что если вспомнить как переключаются ключи (смотри: Управление бесколлекторным двигателем), то мы увидим, что никогда не бывает такой ситуации, когда ключи одного плеча меняются состояниями. Итак, управлять Dead-Time должен микроконтроллер. Исключение может быть только в случае, когда вы используете специальной трехфазный драйвер, который управляет всеми шестью ключами и имеет реальный Dead-Time.

Датчики тока

Традиционно в качестве датчика тока используют шунт. Зная его сопротивление, измеряют на нем напряжение и вычисляют ток. Но для мощных систем использование шунта не всегда технически оправдано из за слишком больших тепловых потерь на нем. Датчики тока на эффекте Холла имеют практически нулевое сопротивление, поэтому они не греются. К тому же, как правило, питания и уровень выходного сигнала таких датчиков находятся в диапазоне 5В, что очень удобно для реализации регулятора на микроконтроллерах. В настоящее время довольно популярны датчики тока компании Allegro MicroSystems, например серии ACS71X, ACS75X.

Кроме обычного измерения уровня тока микроконтроллером, разумно создать схему аппаратной защиты от превышения критического уровня тока. Для измерения уровня тока микроконтроллер тратит некоторое время. Кроме того, ток измеряют периодически через некоторое время. Такие задержки, а также возможные программные ошибки могут создать ситуацию, когда критический ток успевает вывести из строя устройство еще до того, как придет момент следующего измерения. Схема должна отключать силовые ключи когда ток превышает критическое значение, независимо от работы микроконтроллера. Для реализации такой схемы обычно используют компаратор, на вход которого подают сигнал с датчика тока и опорный сигнал. При превышении допустимого тока компаратор срабатывает. Выход компаратора используют как дискретный сигнал в логических схемах, аварийно отключают ключи. Такая реализация имеет наименьшую задержку.

Некоторые драйверы имеют дополнительный вход для аварийного отключения ключей, что значительно упрощает создание безопасной схемы регулятора (ESC) безколесторного двигателя (BLDC).

Успехов!

P.S. Этой публикацией я завершаю цикла статей о трехфазные бесколлекторных двигателях, которого начал год назад. Это не означает, что больше не будет ни слова о бесколлекторных двигателях. Статьи об электродвигателях еще будут, но это будут отдельные материалы, конкретные реализации и т.д. Надеюсь, что моя работа не была напрасной.


Статьи по бесколлекторным моторам:

Translate
Архіви

© 2011-2019 Андрій Корягін, Кременчук - Київ, Україна